
The nonisentropic generalisation of the classical theory of Riemann invariants

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 2721

(http://iopscience.iop.org/0305-4470/20/10/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 2721-2731. Printed in the U K  

The non-isentropic generalisation of the classical theory of 
Riemann invariants 

B Gaffet 
CNRS and C E N  Saclay, Service d'Astrophysique, 91 191 Gif-sur-Yvette Cedex, France 

Received 8 August 1986 

Abstract. The one-dimensional motion of an isentropic gas has long been known to be 
characterised by the presence of Riemann invariants; the choice of the latter as independent 
variables results in an essential simplification of the system of Euler equations which 
becomes linear. Another case which also presents Riemann invariants was discovered 
about 1954 by Stanyukovich and by Martin and Ludford; the L M S  gas and the isentropic 
gas have been shown to be mathematically equivalent. These two celebrated cases of 
integrability are shown here to be but particular cases of a more general class of entropy 
distributions, for which Riemann invariants are here constructed. 

1. Introduction 

The compressible flow of an  ideal gas is governed by the well known Euler equations, 
which constitute a hyperbolic system possessing two distinct systems of characteristic 
curves, (C ' )  and (C-) .  These curves play an essential role both from the point of 
view of the physics and of the mathematical analysis and it is usually very convenient 
to choose characteristic coordinates ( a ,  p )  as independent variables, rather than the 
Eulerian coordinates, r, t, or the Lagrangian coordinates M ,  t ( M  here denotes the 
Lagrangian mass). The (C ' )  curves are then those on which a remains constant and  
the ( C - )  curves those where p is constant. From that definition, it is apparent that 
a, p are only defined u p  to a transformation of the general form 

a ' =  f ( a )  P ' = g ( P )  (1.1) 

where the functions f and g are both arbitrary. Thus the system of Euler equations, 
which is of second order when the entropy distribution is specified, becomes a fourth- 
order system in the characteristic formalism, owing to the presence of the two arbitrary 
functions. There exists however a remarkable exception, which is the case where a 
special choice of characteristic coordinates I+, I- may be selected out of the whole 
set ( l . l ) ,  i.e. when I' may be determined explicitly and  unambiguously. These may 
be called Riemann invariants, after the work of Riemann [ l ] .  In such a case the 
characteristic equations written with respect to the variables I' remain second order. 

Another advantage of the presence of Riemann invariants ( R I )  is that, at least in 
certain favourable cases, they directly lead to an  expression of the general integral in 
closed form, as pointed out by Gaffet [ 2 ] ,  namely when the Euler equations present 
a symmetry, denoted ( T )  (i.e. ( T )  is a contact transformation or, more generally, a 
Backlund transformation) the R I  I' transform into (other) quantities K',  but the 
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characteristic curves themselves remain unchanged [3] t. Under such conditions the 
quantities I*, K *  must be related by an equation of the form of (1.1): 

K * = S ( I * ) .  (1.2) 

If the quantities K’ and I’ are independent, as is frequently the case, the f * cannot 
be fixed functions and therefore are ‘arbitrary’, i.e. their choice depends upon the 
initial and boundary data. Then (1.2) constitutes an expression of the general integral 
in closed form ([2], equation (5.3)). 

2. The two cases already known to possess Riemann invariants 

Following the notation of [2], we write the Euler equations for a polytrope of index 
y in the following form: 

P = p ’ ~ (  M )  

dM = p(dr - u d t )  

U , + P M  = o  
(2.1) 

where P, p, U denote the pressure, density and fluid velocity, M is the Lagrangian mass, 
and subscripts indicate partial differentiation; U may be called the adiabatic invariant. 
In cases where the distribution u ( M )  is power law we define the ‘entropy index’ b as 

c + ( M ) a l / M b .  (2.2) 

c2 = yP/p. (2.3) 

The sound velocity is related to P and p by the well known formula 

The characteristic formulation may be derived by the method of Courant and 
Friedrichs [4], and has already been given in [2]; we shall repeat it here for convenience: 

ra = ( U - c ) t ,  

P, = +pcu, 

M ,  = -pet, 

( 2 . 4 ~ )  

(2.4b) 

( 2 . 4 ~ )  

plus three corresponding equations with respect to the variable p, obtained by changing 
c to -c.  It is of interest to note another form equivalent to (2.4b): 

(y- l )u , -2ca = - b ( P / M ) t ,  (2.5) 
valid for a power law entropy distribution. 

2.1. The case of isentropicflow [ l ]  

The derivation of Riemann invariants becomes straightforward if one starts from the 
characteristic formulation (2.4). In the isentropic case b = 0 and equation (2.5) may 
be integrated to give 

U-2C/(Y- 1 )  = g ( P ) .  

t This result has an obvious physical interpretation: two solutions which differ only slightly, and only in 
the neighbourhood of one characteristic, must under the transformation (T) go over into two new solutions 
which also coincide almost everywhere, i.e. everywhere except near one characteristic. That is, a characteristic 
must be transformed into another characteristic. 
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Hence the two R I :  

Z'= u*2c / (y -  1). (2.6) 

It is easily verified that eliminating M from equation ( 2 . 4 ~ )  yields an equation for 
t ( Z + ,  I - )  which is not only of second order but also linear. 

The cases of isentropic flow where y = (2n + 1 ) / ( 2 n  - l ) ,  with n integer, are known 
to be mathematically equivalent to the case y = 3 [ 5 ] .  

For the latter case ( y = 3) we have shown in [ 2 ]  that there exists an exact symmetry 
( T * )  of the Euler equations having the properties c * = c t ,  u * = u t - r .  Thus ( T * )  
transforms I' ( U  i c)  into a new pair of Riemann invariants K ' = ( U  f c ) t  - r and as 
a result the general solution may be written down in closed form in the following way: 

( u  f c ) t  - r = f '(U i. c). (2 .7)  

Equation (2.7) is a classical result which may also be found in [5]. 

2.2. The Ludford-Martin-Stanyukouich ( L M S )  gas 

This is the case characterised by a power law entropy profile with index 

b = 3 y -  1. (2.8) 

It was first considered by Stanyukovich [6], who showed that it is mathematically 
equivalent to the isentropic case ( b  = 0). Later on, this problem was more extensively 
studied [7, 8 p200, 9 ,  101. In particular, Martin and Ludford [7] have noted the 
presence of a pair of Riemann invariants, which are 

where fl represents the first integral of momentum, defined u p  to an arbitrary additive 
constant by 

d I I =  u d M - P d t  (2.10) 

n, = ( u + c / y ) M , .  (2.11) 

or, in characteristic form ( [ 2 ] ,  equation (3.13)) 

The transformation, which we denoted by ( T ) ,  relating the isentropic and LMS gases, 
can be interpreted in terms of an M-dependent rescaling of the system of units, as 
shown in [2]. 

3. New cases of one-dimensional gas flow possessing Riemann invariants 

Our starting point is that generalised Riemann invariants may also be constructed for 
the case 

P K p 3 / M 4  (3.1) 
i.e. when y = 3 and b = 4. However, it has also been shown by Gaffet [ 111 that such 
an equation of state is mathematically equivalent to the more general entropy distri- 
bution 

P = p3( a,+ a ,  M + u , M ' ) - ~  (3.2) 
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where a,, a ,  and a ,  are arbitrary constants. Therefore, R I  will also be present for the 
three-parameter class of entropy profiles (3 .2 ) .  We now proceed with the derivation, 
assuming the power law profile (3 .1 ) .  

A 

3.1. The characteristic coordinates 6 ,  P 
It is worth recalling here that the quantity 

U* = ut - r (3 .3)  

plays a role completely analogous to that of the velocity U itself [2, 121. Then the first 
step in our derivation of the Riemann invariants will be to show that the expressions 

(3 .4)  

are characteristic coordinates too. 

tics, it will be sufficient to give the proof for p say, i.e. we must calculate 
In view of the complete symmetry of the rol$s played by (C ' )  and ( C - )  characteris- 

and show that it vanishes identically. 
The above expression involves second-order derivatives, both of the mixed type, 

such as uap, u z p ,  and also the unmixed derivatives upp,  U&. It also involves third-order 
derivatives of the type umpp, u X p p .  We show in the appendix that the second-order 
derivatives of mixed type can all be expressed in terms of the first-order derivatives 
only and as a consequence the third-order derivatives involved can all be reduced to 
second-order unmixed derivatives such as upp, U&. We also show in the appendix 
that the coefficients of the latter in (3 .5)  are identically zero and that the remaining 
expression involving first-order derivatives vanishes identically as well. This completes 
the proof that p* is a function of p only, and hence a characteristic coordinate. One 
can show in the same way that 6 is a characteristic coordinate as well. 

3.2. The pair of Riemann invariants I' 

In view of the fact that b, as defined by (3 .4 ) ,  is cubic in the differential dp,  it is natural 
to form the quantity 

P3 = g ( P )  (3 .6)  

and its primitive 

(3 .7 )  

Clearly, I -  is a characteristic coordinate as well and furthermore it is independent, 
by construction, of the choice of P. In fact, the only ambiguity remaining in the 
definition of I -  is the presence of an arbitrary additive constant, the integration 
constant. Therefore I -  is a Riemann invariant. 
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It is possible to rewrite it in a manifestly intrinsic form by returning to the Lagrangian 
independent variables M, f .  The transformation of variable (from a, p to M, t )  may 
be performed by means of the following relations ( [ 2 ] ,  equation ( 3 . 1 2 ) ) :  

where the symbol a denotes the operator of partial differentiation and 
1 

P C  
2t, d a  = d t  -- d M  

1 

P C  
2tp  d p = d t + - d M .  

It is useful to introduce a quantity h -  whose definition is intrinsic: 

h-=?!?= * vT+pcv* ,  

up v l + p c v M  

In terms of h- ,  we have 

~ p ~ p * p  - vp*vpp v $ h j  

( 3 . 9 )  

( 3 . 1 0 )  

( 3 . 1 1 )  

and hence 
d I - / d P  = M”3v;’3(hp)1’3  

= M ’ / 3 t p  ( U, + ~ c v ~ ) ~ / ~ (  h ;  + p ~ h , ) ” ~ .  (3 .12)  

Furthermore, aZ-/aa = 0 as has already been shown. 
Thus we obtain the following expression for I - ,  which is manifestly intrinsic: 

d l -  = U, + p ~ v ~ ) ~ ’ ~ ( h ; + p c h M ) ~ ’ ~ ( d f +  ( l l p c )  d M ) .  ( 3 . 1 3 )  
A corresponding expression may be derived for I +  by changing c to - c  everywhere 
(including in the definition of h- ,  which becomes h+) .  

It is worth noting that I -  is the potential associated with a conservation law, in 
the same way that n in ( 2 . 1 0 )  is the potential describing momentum conservation ( [ 2 ] ,  
0 3.2) .  The conserved current flows along the equipotentials, which in the present case 
are the characteristics. 

In conclusion we have obtained two new conservation laws, together with the two 
potentials I + ,  I - .  

4. The case of arbitrary entropy distributions 

We restrict ourselves here to the consideration of polytropes y = 3.  

4.1. A new Lagrangian variable 

For arbitrary entropy distributions, it will be convenient to rewrite the system of 
characteristic equations ( 2 . 4 )  in the form given in [ 2 ]  (equations ( 3 . 2 ) - ( 3 . 5 ) ) :  

r, = ( U  - c ) t ,  r , = ( v + c ) t ,  ( 4 . l a )  
(U, - c,) = +pc3t, 

!Pa = - c2 t ,  

( u p  + c p )  = + p c  3 t p  

qp = +Ap 
( 4 . 1 6 )  

( 4 . 1 ~ )  
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where 

d q = & d M  

and p is a Lagrangian variable related to the slope of the entropy profile: 

(4.2) 

We note the following identity relating first-order derivatives: 

( u p  + C p ) L  = (U, -Cel t , .  (4.4) 

Now, as a generalisation of the expression (3.4) we propose for arbitrary (T(M): 

with 

(4.5) 

In the same way as in 03 (see also the appendix) we now calculate the a derivative 
of B. We have 

(4.7) 
3Hi 
2c 

u ’ / ~ B ,  = HI, +-(U, - c,)  + ( T ” ~ ( U - ’ / ~ C H ~ } ,  

and, of course, B, will not in general vanish. 

first-order derivatives, through the following reduction formulae: 
As in § 3, the second-order mixed derivatives appearing in (4.7) can be reduced to 

crap = - (cotp + cpt,) 

= +(upto - u,tp) 

2cu,, = ( U &  + upc,). 

We note that uap and tmp  are ‘proportional’: 

(4.10 3 2214 = - p c  tup. 

jcc,p 2 = ( c , u p - u , c p + 2 c , c p ) + Y ( u , - c c , ) ( u p + c p )  

For cap we find 

= ( U &  - upc, + 2u,up) + ( v  - 2)( U, - c,)(up + c p )  (4.11 

where the new Lagrangian coordinate v is related to the second derivative of U (  M )  a 

(4.12) 

(4.13) 
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Concerning the double p derivatives, only two of them are found to be independent. 

(4.14) 

For example, the derivatives upp, cop, tpp are linked by the relation 

' , (Upp + cpp) + (c, - U, I tpp = t p (3umP - cup) 

valid independent of the entropy profile U. 

Now third-order derivatives arise from the last term in (4.7) only: 

~ U ~ ' ~ ( U - ' ' ~ C H ~ ) ,  = 2c(upt,,p - t p ~ , p p )  

+ 2 c ( ~ , , ~ ~ , - r , ~ ~ ~ , ) + ( 3 u , - c , ) ( ~ ~ ~ ~ ~ - ~ ~ u ~ ~ ) .  (4.15) 

The third-order term can be changed to second order by means of the reduction 
formulae (4.8)-(4.11): 

2c(upt,,p - tpu,pp) 

= ( 3 u , + ~ ~ ) ( t , ~ ~ ~ - ~ , t ~ ~ ) + 2 ~ ~ ( u ~ - ~ ~ ) t , ~ + ( r ~ / t , ) ~ , ~ ( ~ , t ~  -v,t,) 

+ ( t o /  [ ( c p  - 2up ) - 3 u,fp 1. (4.16) 

The second term in (4.15) is similarly reduced to 

2c(uaptpp - t m p u p p )  = ( 3 ~ ~ + c ~ ) ( ~ , t ~ ~ - t , ~ ~ ~ ) + ( ~ ,  -3u,)(uptpp - t pupp) .  (4.17) 

Thus it is found that all second-order P-derivative terms cancel out in the expression 
(4 .19 ,  which is therefore expressible in terms of first-order derivatives only: 

2u1'4( u-1'4cH*), = 2up ( up - cp) t,p + ( t p /  t,)c,p (U& - upt,) 

+ ( t p /  1,) u,p [ ( c p  - 2vp ) t ,  - 3 uatp 1. (4.18) 

The evaluation of the remaining terms in (4.7) is straightforward. We find 

HI, = tp(cp -2Up)hp + Up'pC,.p + up(cp - Up)' ,p (4.19) 

and hence the result 

2u1"B, = ( tp / t, ) cmp ( U, tp + opt, + (3 tp / 2, uep [ t ,  ( C, - 2 up ) - vatp I 
+ ( 3 / c ) ~ p t p ( u , - c c , ) ( C p - u p ) .  (4.20) 

(We note that the tap terms have cancelled out in the above equation.) After reduction 
of the second-order derivatives uUp,  cap, we obtain the following rather simple result: 

3 ( ~ - 1 )  
4CU1i4 

B, =- t ( u p  + cp)(2u,up + u,cp - UpC,). (4.21) 

In the particular case where v =  1 ,  which is the entropy profile n ( M ) a  l / M 4 ,  B, 
identically vanishes and the essential result of § 3 is recovered. For arbitrary U, however, 
B, will not in general vanish; still, its consideration leads to an important new result, 
as we presently show. 

We introduce a new quantity: 

6 =  + ( c 6 / u ) t i  = + T ~ / u .  (4.22) 

Its a derivative is easily obtained as 

- +3 
B, = - - - ~ ~ ~ ( u ~ + c ~ ) ( ~ u , u ~ + u , c B  - u ~ c , ) .  (4.23) 

c w  
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We observe that B,  and 6, are proportional: 

B a / E 0  = i ~ ~ ’ ~ p ’ (  U - 1 )  (4.24) 

and the proportionality coefficient-clearly is a Lagrangian variable, as are U, p and U. 
In  conclusion, the ratio B , / B ,  is a Lagrangian variable for arbitrary entropy 

distributions. 

4.2. The three-parameter class leading to Riemann invariants 

In the particular case where the new Lagrangian variable is a constant 

4B,/ i ,  = k (4.25) 

we obtain as new characteristic coordinates: 

p̂  = (4B - I&) (4.26) 

from which a Riemann invariant, I - ,  can be derived in the manner already illustrated 
in § 3: 

r 
(4.27) 

and of course another Riemann invariant If may also be found owing to the symmetry 
of the roles played by the two variables (Y and p. 

The condition for the existence of that pair of R I  is that a second order ordinary 
differential equation (ODE) be satisfied by the entropy profile U :  

a 3 / 4  p 2 ( v - l ) = k .  (4.28) 

We recall that p and v are defined by (4.2), (4.3) and (4.12). Equation (4.28) is solved 
by taking 

G ( 3 ~ ) - ” ~  (4.29) 

as the unknown function and the best choice is to retain the Lagrangian mass coordinate 
M as independent variable. In this way we find 

= -JGG‘( M )  

v = (GG”+ GI2)/ G“ 

and hence 

( 3 ~ ) ~ ’ ~ p ~ ( ~ -  l ) = $ G ” ( M ) .  

Thus the ODE (4.28) reduces to 

(4.30) 

(4.31) 

G” = constant (4.32) 

and is at once integrable in the form 

G = (a,+ a l M  + a z M 2 )  (+a 1/G4 (4.33) 

a, ,  a,  and a2 being arbitrary constants. 

invariants which are given by (4.27) and by another symmetrical equation. 
For these entropy distributions, the Euler equations present a pair of Riemann 



Riemann invariants of non-isentropic gas flow 2729 

5. Conclusion 

The Euler equations describing one-dimensional adiabatic gas flow constitute a second- 
order system but generally become of fourth ordert  when characteristic coordinates 
are used instead of the Eulerian coordinates ( r ,  t ) .  There is an exception, however, 
which occurs when Riemann invariants exist, in which case the characteristic formula- 
tion remains second order. The original system may then be thought of as being 
reduced to its simplest form, being both second order and characteristic. 

There exist only two types of gas for which Riemann invariants have been known 
to exist, u p  to now: the isentropic gas [ l ]  and the so-called LMS gas [6 ,7]  which can 
be reduced to the former by means of a general transformation called ( 7 )  [2]. 

We present a new three-parameter entropy distribution for which Riemann 
invariants are shown here to exist, assuming a polytrope y = 3: 

P / p 3  = (a,+ a ,  M + a , M 2 ) - 4 .  (5.1) 

We have shown in an  earlier work [ l l ]  that the above entropy distribution can be 
reduced by means of the transformation ( F )  to the simple power law profile 

P o ~ p j / M ~ .  (5 .2 )  

Riemann invariants are explicitly constructed here, assuming the above entropy profiles. 

Appendix. Proof that p̂  is a characteristic coordinate 

The aim of this appendix is to show that p, defined by (3.4), is a characteristic 
coordinate, i.e. that the right-hand side of (3.5) vanishes identically. Substituting 
v* ut - r, we write p* = M H ,  + McH2 with 

HI Uptp(Cp - u p )  

H2= ( u p t p p  - ‘ p u p , ) .  

Then the condition pa = O  is 

M , H ~ + M H ~ , + ( M c ) , H , +  M c H ~ ,  = O .  

The term H I ,  may be expanded as follows: 

HI, = ‘ . p U p ( C p  - u p )  + u,ptp (cp - 2up 1 + C,p‘pUp.  (A31 

Note that it involves second-order mixed derivatives. 
Starting from the characteristic equations (2 .4 )  and (2 .5 ) ,  with y = 3, b = 4, it is 

straightforward to establish the following reduction formulae for the mixed derivatives: 

ctnp = upt, - vatp 

2cu4  = U& + vpc, 

2 C C 4  = 3(u,up + c,cp) .  

t The Euler equation and the continuity equation form a second-order system when Lagrangian coordinates 
M, f are used and the energy equation reduces to an algebraic relation between P, p and M. On the other 
hand, the characteristic system is of order four, since there are four independent characteristic equations 
of first order, namely (2.46, c )  plus the two corresponding equations with respect to p. 
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It is also important to notice the following relations between first-order derivatives: 

(vp+cp)t ,  =(v,-c,)tp 
~ c M ,  = 3 M ( v ,  -c,) 

2( M c ) ,  = M ( ~ v ,  - c,). 

Equation ( A 5 a )  can easily be derived from (2.5), supplemented by the corresponding 
equation with respect to p. 

Concerning the unmixed derivatives, it is found that only two of them are indepen- 
dent, i.e. we have relations of the type 

(v,,+~L3L3)~&3+3(c~--Up) 2c . (‘46) 
(up+cp) 4 3  

Now, taking into account ( A 4 ) ,  the second-order derivatives may be eliminated 
from the expression for H I ,  with the result 

2cH1 , = 2t,vZ,( cp - u p )  + t p  [ U, ( 5 ~ ;  - 4vpcp + c;)  + 2c,vp (2cp - u p ) ]  

hence 

( 2 c I M ) ( M H l ) n  2c[H,n + ( M , / M ) H I I  
= 2 t ,  U; ( c p  - up ) + fp  [ U, ( 2  U; - up cp + c; ) + c, up ( cp + up ) 1. ( A 7 )  

Subtracting from ( A 7 )  the quantity 

~ p ( ~ p + ~ p ) [ ( ~ p + ~ p ) t n + ( ~ n - ~ n ) f p l  

which, by ( A ~ u ) ,  is identically zero, we derive the following simple and symmetrical 
result: 

( 2 c / M ) ( M H I ) ,  = ( 3 ~ ; + c ; ) ( u , t p  -up?,). (A81 
Next we calculate H,,, which involves the third-order derivatives tOpp,  uapp. Taking 

into account ( A 4 ) ,  the latter may be reduced to the second-order derivatives tpp,  v p p ,  
as follows: 

( 3 U p  - c p )  
b o t ,  - u m l p  1 2c ctopp = ( t a u p p  - u u t p p ) +  

( A 9 )  
CP 2ctpun,, = ( u p  + cp ) [ b o t p p  - t a u p p )  + - ( u n t p  - upto )I. 
C 

Next we obtain 

In this way we obtain 

( ~ c / M ) ( M c H ~ ) ,  E ( 3 ~ ,  -c,)cH2+2c2H2, 

= ( 3 4 +  c;)(v,f,  - U,?,). 
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We note that even the second-order derivatives disappear altogether from the final 
result. Furthermore, comparing (A8) and (A12), we obtain the desired result (A2): 

( M H , ) ,  + ( M C H , ) ,  = 0. 

That proves that p ,̂ as defined by (3.4), is a characteristic coordinate. 
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